On a Family of Hyperplane Arrangements Related to the Affine Weyl Groups

نویسنده

  • PATRICK HEADLEY
چکیده

Let 8 be an irreducible crystallographic root system in a Euclidean space V , with 8+ the set of positive roots. For α ∈8, k ∈Z, let H(α, k) be the hyperplane {v ∈ V : 〈α, v〉 = k}. We define a set of hyperplanes H = {H(δ, 1) : δ ∈ 8+} ∪ {H(δ, 0) : δ ∈ 8+}. This hyperplane arrangement is significant in the study of the affine Weyl groups. In this paper it is shown that the Poincaré polynomial of H is (1+ ht)n , where n is the rank of 8 and h is the Coxeter number of the finite Coxeter group corresponding to 8.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric combinatorics of Weyl groupoids

We extend properties of the weak order on finite Coxeter groups to Weyl groupoids admitting a finite root system. In particular, we determine the topological structure of intervals with respect to weak order, and show that the set of morphisms with fixed target object forms an ortho-complemented meet semilattice. We define the Coxeter complex of a Weyl groupoid with finite root system and show ...

متن کامل

Affine and Toric Hyperplane Arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For arrangements on the torus, we also generalize Zaslavsky’s fundamental results on the number of regions.

متن کامل

The module of affine descent classes of a Weyl group

The goal of this paper is to introduce an algebraic structure on the space spanned by affine descent classes of a Weyl group, by analogy and in relation to the structure carried by ordinary descent classes. The latter classes span a subalgebra of the group algebra, Solomon’s descent algebra. We show that the former span a left module over this algebra. The structure is obtained from geometric c...

متن کامل

On Free Deformations of the Braid Arrangement

There has been considerable interest in the past in analyzing specific families of hyperplane arrangements from the perspective of freeness. Examples of such families have primarily included classes of subarrangements of Coxeter arrangements. The subarrangements of the braid arrangement An , the Weyl arrangement of type An−1, are known as the graphical arrangements. They correspond naturally to...

متن کامل

Affine and toric arrangements

We extend the Billera–Ehrenborg–Readdy map between the intersection lattice and face lattice of a central hyperplane arrangement to affine and toric hyperplane arrangements. For toric arrangements, we also generalize Zaslavsky’s fundamental results on the number of regions. Résumé. Nous étendons l’opérateur de Billera–Ehrenborg–Readdy entre la trellis d’intersection et la trellis de faces d’un ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997